Avoiding Attribute Disclosure with the (Extended) p-Sensitive k-Anonymity Model
نویسندگان
چکیده
Existing privacy regulations together with large amounts of available data created a huge interest in data privacy research. A main research direction is built around the k-anonymity property. Several shortcomings of the k-anonymity model were addressed by new privacy models such as p-sensitive k-anonymity, l-diversity, (α,k)-anonymity, t-closeness. In this chapter we describe two algorithms (GreedyPKClustering and EnhancedPKClustering) for generating (extended) p-sensitive k-anonymous microdata. In our experiments, we compare the quality of generated microdata obtained with the mentioned algorithms and with another existing anonymization algorithm (Incognito). Also, we present two new branches of p-sensitive k-anonymity, the constrained p-sensitive k-anonymity model and the psensitive k-anonymity model for social networks.
منابع مشابه
An Enhanced K-Anonymity Model against Homogeneity Attack
k-anonymity is an important model in the field of privacy protection and it is an effective method to prevent privacy disclosure in micro-data release. However, it is ineffective for the attribute disclosure by the homogeneity attack. The existing models based on k-anonymity have solved this problem to a certain extent, but they did not distinguish the different values of the sensitive attribut...
متن کاملEnhanced P-Sensitive K-Anonymity Models for Privacy Preserving Data Publishing
Publishing data for analysis from a micro data table containing sensitive attributes, while maintaining individual privacy, is a problem of increasing significance today. The k-anonymity model was proposed for privacy preserving data publication. While focusing on identity disclosure, k-anonymity model fails to protect attribute disclosure to some extent. Many efforts are made to enhance the k-...
متن کاملP-Sensitive K-Anonymity for Social Networks
— The proliferation of social networks, where individuals share private information, has caused, in the last few years, a growth in the volume of sensitive data being stored in these networks. As users subscribe to more services and connect more with their friends, families, and colleagues, the desire to both protect the privacy of the network users and the temptation to extract, analyze, and u...
متن کاملPrivacy Issues for K-anonymity Model
K-anonymity is the approach used for preventing identity disclosure. Identity disclosure means an individual is linked to a particular record in the published data and individual’s sensitive data is accessed .Some important information such as Name, Income details , Medical Status and Property details are considered as a sensitive data( or Attribute) because these data have to be kept secure fr...
متن کامل(p+, α)-sensitive k-anonymity: A new enhanced privacy protection model
Publishing data for analysis from a microdata table containing sensitive attributes, while maintaining individual privacy, is a problem of increasing significance today. The k-anonymity model was proposed for privacy preserving data publication. While focusing on identity disclosure, k-anonymity model fails to protect attribute disclosure to some extent. Many efforts are made to enhance the kan...
متن کامل